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Outline

• Overview of parallelism in Fortran
• Motivating use cases
• Prior art in OpenMP and OpenACC
• Code for a simple example
• Possible Fortran implementations

This talk is based on a blog post I wrote this summer:
https://github.com/jeffhammond/blog/blob/main/Fortrans_Missing_Parallelism.md 

https://github.com/jeffhammond/blog/blob/main/Fortrans_Missing_Parallelism.md
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Parallelism in Fortran 2018

! coarse-grain parallelism

np = num_images()
n_local = n / np

! X, Y, Z are coarrays

do i=1,n_local
    Z(i) = X(i) + Y(i)
end do
sync all

! fine-grain parallelism

! explicit
do concurrent (i=1:n)
    Z(i) = X(i) + Y(i)
end do

! implicit
MATMUL
TRANSPOSE
RESHAPE
...
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Motivation for Asynchrony 1

0 1 2 3

4 core CPU

Sequential

Sequential

Parallel

Fork

Join

! sequential
call my_input(X,Y)

! parallel
do concurrent (i=1:n)
    Z(i) = X(i) + Y(i)
end do

! sequential
call my_output(Z)
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Motivation for Asynchrony 1

0 1 2 3

4 core CPU

Sequential

Sequential

Parallel

Fork

Join

! sequential
call my_input(X,Y)

! parallel
do concurrent (i=1:n)
    Z(i) = X(i) + Y(i)
end do

! sequential
call my_unrelated(A)
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Motivation for Asynchrony 1

0 GPU

CPU+GPU

Sequential

Sequential

Parallel

Fork

Join

! sequential on CPU
call my_input(X,Y)

! parallel on GPU
do concurrent (i=1:n)
    Z(i) = X(i) + Y(i)
end do

! sequential on CPU
call my_unrelated(A)
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Motivation for Asynchrony 1

0 GPU

CPU+GPU

Sequential

SequentialParallel

Fork

Join

! sequential on CPU
call my_input(X,Y)

! parallel on GPU w/ async
do concurrent (i=1:n)
    Z(i) = X(i) + Y(i)
end do

! sequential on CPU w/ async
call my_unrelated(A)

Savings
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Motivation for Asynchrony 2 (synthetic)

call sub1(IN=A,OUT=B)
call sub2(IN=C,OUT=D)
call sub3(IN=E,OUT=F)
call sub4(IN=B,IN=D,OUT=G)
call sub5(IN=F,IN=G,OUT=H)
! 5 steps require only 3 phases

A C E

B D F

1 2 3

G

G

4 4

5

5

Fortran compilers may be able to prove 
these procedures are independent but it is 
often impossible to prove that executing 
them in parallel is profitable.
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Motivation for Asynchrony 2 (realistic)

https://dl.acm.org/doi/10.1145/2425676.2425687
https://pubs.acs.org/doi/abs/10.1021/ct100584w  

https://dl.acm.org/doi/10.1145/2425676.2425687
https://pubs.acs.org/doi/abs/10.1021/ct100584w
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Motivation for Asynchrony 3

This pattern appears in a range of applications:
● Deterministic neutron transport
● Dynamic programming for sequence alignment 

e.g. Smith-Waterman/PairHMM (bioinformatics)
● Linear algebra (e.g.NAS LU benchmark) 

See https://github.com/ParRes/Kernels p2p* for details...

https://github.com/ParRes/Kernels
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Both of the popular directive-based models for parallel computing support asynchronous 
tasks in a range of operations.

OpenACC supports async and wait, with an implicit/default queue (stream) as well as 
explicit/numbered queues, and the ability to create dependency chains between 
operations, similar to CUDA streams.

OpenMP supports tasks with dependencies (and without).  The syntax for dependencies is 
finer granularity - based on data references rather than queues - and the implementation 
may end up using a global queue as a result.

There are merits to both approaches, so the Fortran community will have to think about 
what form should be standardized.

Prior Art in OpenMP and OpenACC
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Prior Art in OpenMP and OpenACC

!$omp parallel 
!$omp master
do j=1,n
  do i=1,m
    !$omp task
    !$omp& depend(in:grid(i-1)) &
    !$omp& depend(out:grid(j))
    ...
    !$omp end task
  enddo
enddo

do i=1,n
  !$acc parallel loop async(i)
  do j=1,m
    ...
  enddo
enddo
do i=1,n
  !$acc parallel loop async(i)
  do j=1,m
    ...
  enddo
enddo
!$acc wait

e.g. https://github.com/ParRes/Kernels/blob/default/FORTRAN/p2p-tasks-openmp.F90 

These are examples of different things.  Please don’t try to compare them.

https://github.com/ParRes/Kernels/blob/default/FORTRAN/p2p-tasks-openmp.F90


14 

Example
module numerot

  contains

    pure real function yksi(X)

      real, intent(in) :: X(100)

      !real, intent(out) :: R

      yksi = norm2(X)

    end function yksi

    pure real function kaksi(X)

      real, intent(in) :: X(100)

      kaksi = 2*norm2(X)

    end function kaksi

    pure real function kolme(X)

      real, intent(in) :: X(100)

      kolme = 3*norm2(X)

    end function kolme

end module numerot

program main

  use numerot

  real :: A(100), B(100), C(100)

  real :: RA, RB, RC

  A = 1;  B = 1;  C = 1

  RA = yksi(A)

  RB = kaksi(B)

  RC = kolme(C)

  print*,RA+RB+RC

end program main

https://github.com/jeffhammond/blog/tree/main/CODE 

https://github.com/jeffhammond/blog/tree/main/CODE
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Coarrays are designed to support 
distributed memory, hence are based on 
image-private data.

There is limited opportunity for 
shared-memory optimizations in such 
codes, as direct inter-image copies will 
be required.

One of the common motivations for 
task-based models is dynamic 
load-balancing, but coarrays provide no 
mechanism for doing this, so users will 
have to write their own, which they 
always do poorly.

A coarray implementation?

program main

  use numerot

  real :: A(100) ! each image has one

  real :: R

  A = 1

  if (num_images().ne.3) STOP

  if (this_image().eq.1) R = yksi(A)

  if (this_image().eq.2) R = kaksi(A)

  if (this_image().eq.3) R = kolme(A)

  sync all

  call co_sum(R)

  if (this_image().eq.1) print*,R

end program main
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This implementation only supports 
independent tasks, and is likely 
completely useless when the 
implementation uses SIMD lanes or GPU 
threads for DO CONCURRENT (DC).

As with coarrays, the if (...eq...) is not 
scalable to more general examples. Do 
we want arrays of functions?

Both the coarray and DC are also tedious 
and error prone, which is a good 
justification for adding new language 
features.

A do concurrent implementation?

program main

  use numerot

  real :: A(100), B(100), C(100)

  real :: RA, RB, RC

  integer :: k

  A = 1;  B = 1;  C = 1

  do concurrent (k=1:3) ! reduction, someday

    if (k.eq.1) RA = yksi(A)

    if (k.eq.2) RB = kaksi(B)

    if (k.eq.3) RC = kolme(C)

  end do

  print*,RA+RB+RC

end program main
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do i=1,n
  task block async(i)
    do j=1,m
      ...
    enddo
  end task block
enddo
task sync all

What might Fortran tasks look like?
The block mechanism is used for scoping.

Prepending task implies this block scope 
is also a task, which can execute 
asynchronously until synchronized.

Important questions:
• Is everything (e.g. I/O)  allowed to be 

in a task?
• How do tasks interact with shared 

state?
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do i=1,n
  task block async(i)
    type :: private
    do j=1,m
      ...
    enddo
  end task block
enddo
task sync all

What might Fortran tasks look like?
The block mechanism is used for scoping.

Prepending task implies this block scope 
is also a task.

It is essential to be able to have 
task-private state, which is already 
covered by the block feature.
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real :: x
do i=1,n
  task block async(i) shared(x)
    type :: private
    do j=1,m
      ...
    enddo
  end task block
enddo
task sync all

What might Fortran tasks look like?
We also want to be able to describe the 
intent of data outside of the task, so we 
could reuse locality specifiers from DO 
CONCURRENT.

Locality specifiers already match OpenMP 
syntax, and a related feature in Fortran, 
so they are likely to be intuitive to 
Fortran programmers.

Task reductions are supported by 
OpenMP now, but the concept is tricky.  

Atomics would be nice but that’s a big 
bag of worms.
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real :: x
do i=1,n
  task call foo(i,x)
enddo
task wait

do i=1,n
  task call foo(i,x) async(mod(i,2))
enddo
task sync 0
...
task sync 1

What might Fortran tasks look like?

Calling subroutines as tasks is useful, but 
they should be pure in order to have 
reasonable behavior.

The right syntax for this is not obvious, 
but we can solve that later.
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Summary

Fortran has two great ways to write parallel code, but needs a third.

Shared-memory task parallelism is implemented in OpenMP, OpenACC, and in models 
associated with languages that aren’t Fortran.

Task parallelism allows users to solve new types of problems and make better use of 
existing parallel features, especially DO CONCURRENT (e.g. when executing on GPUs).

Fortran tasks make new things possible and obviate the need for tedious and error prone  
implementations.  They also reduce the need for non-standard extensions like OpenMP 
and OpenACC.

Please do not let whatever you don’t like about my syntax to get in the way 🙂
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Questions/Comments

Twitter: https://twitter.com/science_dot
Email: jeff_hammond@acm.org 
LinkedIn: https://www.linkedin.com/in/jeffhammond/

https://twitter.com/science_dot
mailto:jeff_hammond@acm.org
https://www.linkedin.com/in/jeffhammond/
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Motivation for Asynchrony 3

#pragma omp parallel
#pragma omp master
for (int i=1; i<m; i+=mc) {
  for (int j=1; j<n; j+=nc) {
    #pragma omp task \
            depend(in:grid[i-mc][j],grid[i][j-nc]) \
            depend(out:grid[i][j])
    for (int ii=i; ii<std::min(m,i+mc); ii++) {
      for (int jj=j; jj<std::min(n,j+nc); jj++) {
        A[ii][jj] = A[ii-1][jj] + A[ii][jj-1] - A[ii-1][jj-1];
      }
    }
  }
}
#pragma omp taskwait This pattern appears in a range of applications:

● Deterministic neutron transport
● Dynamic programming for sequence alignment 

e.g. Smith-Waterman/PairHMM (bioinformatics)
● Linear algebra (e.g.NAS LU benchmark) 

See https://github.com/ParRes/Kernels p2p* for details...

https://github.com/ParRes/Kernels

