
Jeff Hammond and Jeff Larkin
NVIDIA HPC Group

The Case for Asynchronous
Task Parallelism in Fortran

3

Outline

• Overview of parallelism in Fortran
• Motivating use cases
• Prior art in OpenMP and OpenACC
• Code for a simple example
• Possible Fortran implementations

This talk is based on a blog post I wrote this summer:
https://github.com/jeffhammond/blog/blob/main/Fortrans_Missing_Parallelism.md

https://github.com/jeffhammond/blog/blob/main/Fortrans_Missing_Parallelism.md

4

Parallelism in Fortran 2018

! coarse-grain parallelism

np = num_images()
n_local = n / np

! X, Y, Z are coarrays

do i=1,n_local
 Z(i) = X(i) + Y(i)
end do
sync all

! fine-grain parallelism

! explicit
do concurrent (i=1:n)
 Z(i) = X(i) + Y(i)
end do

! implicit
MATMUL
TRANSPOSE
RESHAPE
...

5

Motivation for Asynchrony 1

0 1 2 3

4 core CPU

Sequential

Sequential

Parallel

Fork

Join

! sequential
call my_input(X,Y)

! parallel
do concurrent (i=1:n)
 Z(i) = X(i) + Y(i)
end do

! sequential
call my_output(Z)

6

Motivation for Asynchrony 1

0 1 2 3

4 core CPU

Sequential

Sequential

Parallel

Fork

Join

! sequential
call my_input(X,Y)

! parallel
do concurrent (i=1:n)
 Z(i) = X(i) + Y(i)
end do

! sequential
call my_unrelated(A)

7

Motivation for Asynchrony 1

0 GPU

CPU+GPU

Sequential

Sequential

Parallel

Fork

Join

! sequential on CPU
call my_input(X,Y)

! parallel on GPU
do concurrent (i=1:n)
 Z(i) = X(i) + Y(i)
end do

! sequential on CPU
call my_unrelated(A)

8

Motivation for Asynchrony 1

0 GPU

CPU+GPU

Sequential

SequentialParallel

Fork

Join

! sequential on CPU
call my_input(X,Y)

! parallel on GPU w/ async
do concurrent (i=1:n)
 Z(i) = X(i) + Y(i)
end do

! sequential on CPU w/ async
call my_unrelated(A)

Savings

9

Motivation for Asynchrony 2 (synthetic)

call sub1(IN=A,OUT=B)
call sub2(IN=C,OUT=D)
call sub3(IN=E,OUT=F)
call sub4(IN=B,IN=D,OUT=G)
call sub5(IN=F,IN=G,OUT=H)
! 5 steps require only 3 phases

A C E

B D F

1 2 3

G

G

4 4

5

5

Fortran compilers may be able to prove
these procedures are independent but it is
often impossible to prove that executing
them in parallel is profitable.

10

Motivation for Asynchrony 2 (realistic)

https://dl.acm.org/doi/10.1145/2425676.2425687
https://pubs.acs.org/doi/abs/10.1021/ct100584w

https://dl.acm.org/doi/10.1145/2425676.2425687
https://pubs.acs.org/doi/abs/10.1021/ct100584w

11

Motivation for Asynchrony 3

This pattern appears in a range of applications:
● Deterministic neutron transport
● Dynamic programming for sequence alignment

e.g. Smith-Waterman/PairHMM (bioinformatics)
● Linear algebra (e.g.NAS LU benchmark)

See https://github.com/ParRes/Kernels p2p* for details...

https://github.com/ParRes/Kernels

12

Both of the popular directive-based models for parallel computing support asynchronous
tasks in a range of operations.

OpenACC supports async and wait, with an implicit/default queue (stream) as well as
explicit/numbered queues, and the ability to create dependency chains between
operations, similar to CUDA streams.

OpenMP supports tasks with dependencies (and without). The syntax for dependencies is
finer granularity - based on data references rather than queues - and the implementation
may end up using a global queue as a result.

There are merits to both approaches, so the Fortran community will have to think about
what form should be standardized.

Prior Art in OpenMP and OpenACC

13

Prior Art in OpenMP and OpenACC

!$omp parallel
!$omp master
do j=1,n
 do i=1,m
 !$omp task
 !$omp& depend(in:grid(i-1)) &
 !$omp& depend(out:grid(j))
 ...
 !$omp end task
 enddo
enddo

do i=1,n
 !$acc parallel loop async(i)
 do j=1,m
 ...
 enddo
enddo
do i=1,n
 !$acc parallel loop async(i)
 do j=1,m
 ...
 enddo
enddo
!$acc wait

e.g. https://github.com/ParRes/Kernels/blob/default/FORTRAN/p2p-tasks-openmp.F90

These are examples of different things. Please don’t try to compare them.

https://github.com/ParRes/Kernels/blob/default/FORTRAN/p2p-tasks-openmp.F90

14

Example
module numerot

 contains

 pure real function yksi(X)

 real, intent(in) :: X(100)

 !real, intent(out) :: R

 yksi = norm2(X)

 end function yksi

 pure real function kaksi(X)

 real, intent(in) :: X(100)

 kaksi = 2*norm2(X)

 end function kaksi

 pure real function kolme(X)

 real, intent(in) :: X(100)

 kolme = 3*norm2(X)

 end function kolme

end module numerot

program main

 use numerot

 real :: A(100), B(100), C(100)

 real :: RA, RB, RC

 A = 1; B = 1; C = 1

 RA = yksi(A)

 RB = kaksi(B)

 RC = kolme(C)

 print*,RA+RB+RC

end program main

https://github.com/jeffhammond/blog/tree/main/CODE

https://github.com/jeffhammond/blog/tree/main/CODE

15

Coarrays are designed to support
distributed memory, hence are based on
image-private data.

There is limited opportunity for
shared-memory optimizations in such
codes, as direct inter-image copies will
be required.

One of the common motivations for
task-based models is dynamic
load-balancing, but coarrays provide no
mechanism for doing this, so users will
have to write their own, which they
always do poorly.

A coarray implementation?

program main

 use numerot

 real :: A(100) ! each image has one

 real :: R

 A = 1

 if (num_images().ne.3) STOP

 if (this_image().eq.1) R = yksi(A)

 if (this_image().eq.2) R = kaksi(A)

 if (this_image().eq.3) R = kolme(A)

 sync all

 call co_sum(R)

 if (this_image().eq.1) print*,R

end program main

16

This implementation only supports
independent tasks, and is likely
completely useless when the
implementation uses SIMD lanes or GPU
threads for DO CONCURRENT (DC).

As with coarrays, the if (...eq...) is not
scalable to more general examples. Do
we want arrays of functions?

Both the coarray and DC are also tedious
and error prone, which is a good
justification for adding new language
features.

A do concurrent implementation?

program main

 use numerot

 real :: A(100), B(100), C(100)

 real :: RA, RB, RC

 integer :: k

 A = 1; B = 1; C = 1

 do concurrent (k=1:3) ! reduction, someday

 if (k.eq.1) RA = yksi(A)

 if (k.eq.2) RB = kaksi(B)

 if (k.eq.3) RC = kolme(C)

 end do

 print*,RA+RB+RC

end program main

17

do i=1,n
 task block async(i)
 do j=1,m
 ...
 enddo
 end task block
enddo
task sync all

What might Fortran tasks look like?
The block mechanism is used for scoping.

Prepending task implies this block scope
is also a task, which can execute
asynchronously until synchronized.

Important questions:
• Is everything (e.g. I/O) allowed to be

in a task?
• How do tasks interact with shared

state?

18

do i=1,n
 task block async(i)
 type :: private
 do j=1,m
 ...
 enddo
 end task block
enddo
task sync all

What might Fortran tasks look like?
The block mechanism is used for scoping.

Prepending task implies this block scope
is also a task.

It is essential to be able to have
task-private state, which is already
covered by the block feature.

19

real :: x
do i=1,n
 task block async(i) shared(x)
 type :: private
 do j=1,m
 ...
 enddo
 end task block
enddo
task sync all

What might Fortran tasks look like?
We also want to be able to describe the
intent of data outside of the task, so we
could reuse locality specifiers from DO
CONCURRENT.

Locality specifiers already match OpenMP
syntax, and a related feature in Fortran,
so they are likely to be intuitive to
Fortran programmers.

Task reductions are supported by
OpenMP now, but the concept is tricky.

Atomics would be nice but that’s a big
bag of worms.

20

real :: x
do i=1,n
 task call foo(i,x)
enddo
task wait

do i=1,n
 task call foo(i,x) async(mod(i,2))
enddo
task sync 0
...
task sync 1

What might Fortran tasks look like?

Calling subroutines as tasks is useful, but
they should be pure in order to have
reasonable behavior.

The right syntax for this is not obvious,
but we can solve that later.

21

Summary

Fortran has two great ways to write parallel code, but needs a third.

Shared-memory task parallelism is implemented in OpenMP, OpenACC, and in models
associated with languages that aren’t Fortran.

Task parallelism allows users to solve new types of problems and make better use of
existing parallel features, especially DO CONCURRENT (e.g. when executing on GPUs).

Fortran tasks make new things possible and obviate the need for tedious and error prone
implementations. They also reduce the need for non-standard extensions like OpenMP
and OpenACC.

Please do not let whatever you don’t like about my syntax to get in the way 🙂

22

Questions/Comments

Twitter: https://twitter.com/science_dot
Email: jeff_hammond@acm.org
LinkedIn: https://www.linkedin.com/in/jeffhammond/

https://twitter.com/science_dot
mailto:jeff_hammond@acm.org
https://www.linkedin.com/in/jeffhammond/

24

Motivation for Asynchrony 3

#pragma omp parallel
#pragma omp master
for (int i=1; i<m; i+=mc) {
 for (int j=1; j<n; j+=nc) {
 #pragma omp task \
 depend(in:grid[i-mc][j],grid[i][j-nc]) \
 depend(out:grid[i][j])
 for (int ii=i; ii<std::min(m,i+mc); ii++) {
 for (int jj=j; jj<std::min(n,j+nc); jj++) {
 A[ii][jj] = A[ii-1][jj] + A[ii][jj-1] - A[ii-1][jj-1];
 }
 }
 }
}
#pragma omp taskwait This pattern appears in a range of applications:

● Deterministic neutron transport
● Dynamic programming for sequence alignment

e.g. Smith-Waterman/PairHMM (bioinformatics)
● Linear algebra (e.g.NAS LU benchmark)

See https://github.com/ParRes/Kernels p2p* for details...

https://github.com/ParRes/Kernels

